

Geothermal Energy Pile

Dr Rao Martand Singh

Asst Prof (Geotechnical Engineering) Department of Civil & Environmental Engineering University of Surrey

University of Surrey, Guildford, UK

Presentation overview

- Why
- What
- How
- Geothermal Energy Pile: Thermo-Mechanical study
- Outcome

Why

- 73% energy is being used for heating/cooling and hot water
- Every house is responsible for 20,000 kg (20 tonnes) of greenhouse gas emissions (GHG) per year
- Conventional heating/cooling system efficiency 50% to 80%
- Carbon tax, energy is getting more expensive
- Reduce energy use and GHG emission save the world

What is ground energy

- Ancient concept: caves, underground houses, wine cellar
- Ground has stable temperature throughout the year and it is equal to the average annual temperature
- Ground is warmer than air in winter and cooler than air in summer

Confusion with terminology

- Types of geothermal energy
 - Deep
 - Shallow

Deep geothermal energy

- available at few kms
- comes from hot rock due to radioactivity
- used for electricity generation

Shallow geothermal energy

- under our feet
- solar radiation
- heating/cooling the buildings

How does it work?

- What do we need?
 - Ground
 - Heat exchanging loop
 - Heat Pump
- What is heat exchanging loop?
 - Plastic pipe (HDPE)
 - Fluid (water or water + glycol)

Horizontal loop

- Lot of space available
- Trenches
- Horizontal bore holes
- Vertical loop
 - Limited space
- Vertical Bore hole

How does it work?

- Open loop
 - Pond, lake, river
 - Water table is high and stable
 - Low installation cost

Monday, 09 April 2018

Heat pump

Image source: Geoexchange

Heat pump

Image source: Geoexchange

What is a Geothermal Energy Pile?

- What is a Pile?
- Deep foundation
- Soft ground
- High-rise buildings

• Skin friction and end bearing

What is a Geothermal Energy Pile?

- Vertical loop
- Cost effective
- Land

Challenges

- What will happen if heat is transferred in and out of the pile foundation:
 - Pile load capacity (friction)
 - Surrounding soil bearing capacity
 - Heat transfer and storage in pile and surrounding soils
 - Pile expansion, contraction, stress and strain
 - Soil deformation, consolidation
 - Does the concrete crack?

Project at Monash

- Laboratory study
 - Thermal conductivity
 - Specific heat capacity
 - Thermo-mechanical properties
 - > Thermo-consolidation
 - > Thermo-triaxial shear strength
 - > Thermo-elastoplastic theory
 - Lab-scale model pile test
- Field study
 - Thermo-Mechanical testing of a fully instrumented Geothermal Energy Pile
- Cost-benefit analysis
- Numerical study Thermo-hydro-mechanical (THM) study Monday, 09 April 2018

For selected Victorian soils and concrete

How to do pile mechanical testing?

Pile static load testing

Pile static load testing

Pile dynamic load testing

Field testing at Monash

- Static load test using Osterberg cell
- Thermal loading via heat pump
- Fully instrumented bore pile
 - Vibrating wire strain gages
 - > Vertical and radial strain
 - > Temperature
 - LVDT
 - > Pile displacement
 - Thermocouples
 - > Temperature in soil

Site for field test

Monash University, Clayton

Pile installation

Pile installation

Schematic of field pile

Thermo-Mechanical testing

- Short term thermal loading
 - Heated (2.4 KW) for 9 days
 - Cooled for 45 days
- Long term thermal loading
 - Heated (2.4 KW) for 52 days
 - Cooled for 78 days
- Pile tested using O-cells before and after each heating and cooling cycle to investigate the effect of heating/cooling on pile load capacity.

- Pile load capacity does not get affected by heating/cooling of energy pile
- Instead pile load capacity increased after heating

Case studies

- Geoscience Australia Building in Canberra •
 - First building in Australia
 - 352 vertical bores, 100 m deep
 - Saving of £80,000 a year
- Kingsmill Hospital, Mansfield, UK ٠
 - Open loop lake system —
 - 10.5 MW system, largest in Europe which required peak heating and cooling capacity of 5000 kW each
 - Save 9600 MWh of gas and electricity a year
 - Prevent 1,700 tonnes of CO2 entering into atmosphere which is equivalent to removing 600 cars off the road
 - Saving of £120,000 a year
- Lambeth College, London, UK •
 - 141 Energy piles
 - 426 kW cooling and 268 kW heating, 4 reversible heat pumps
 - Prevent 253 tonnes of CO2 entering into atmosphere annually which is equivalent to removing 80 cars off the road
- Saving of £35,000 a year

Summary

- It is the most energy efficient, environmental friendly and cost effective way of heating or cooling a building (International Energy Agency)
- It is renewable, sustainable and reduces green house gas (GHG) emission
- 300% to 600% efficient
- One system for both heating and cooling and hot water supply
- Swimming pool can be heated as well.
- No maintenance, small space required for heat pump
- No noise
- Ground source systems are saving the equivalent of 13 million barrels of oil a year
- An average home fitted with ground source system reduces CO₂ emissions by the same amount as planting an acre of trees

Obrigado Thanks for listening

Dr Rao Martand Singh Asst Prof (Geotechnical Engineering) Department of Civil & Environmental Engineering University of Surrey Guildford, Surrey, GU2 7XH UK Email: r.singh@surrey.ac.uk