

Geotermia integrada nas estacas da fundação

Profa. Cristina de H. C. Tsuha Departamento de Geotecnia – EESC – USP

6 de abril de 2018 - POLI/USP

Structure of presentation

- ✓ Energy piles / Tropical and sub-tropical climate (air cooling need)
- ✓ Energy piles in Brazil
- ✓ Evaluation of soil thermal characteristics for CICS project
- ✓ Design for CICS Soil/Climate conditions and Foundations
- ✓ Monitoring programme
- ✓ Installation of the heat exchanger pipes in the pile foundation

Shallow geothermal energy

Energy pile systems

Energy pile / Heat transfer mechanism

pipes attached to the reinforcement cage of the pile

One or more loops

Primary circuit

Secondary circuit

Second<u>ary</u>

Energy piles – Brazil

Energy piles / Tropical and sub-tropical climate (air cooling need)

In 2015, 48% of the total national electricity consumption refers to Brazilian buildings (222 TWh).

In 2005, air conditioning equivalent to 20% of residential consumption and 47% of commercial consumption.

Brazil is the 5th largest consumer of air conditioners in the world.

System to reduce electricity consumption

Energy piles in Brazil

• 2014 - Sao Carlos (USP) Drilling pile (12 m)

2016 - Sao Paulo (USP)
Micropile (15 m)

Energy piles in São Carlos

High-density polyethylene (HDPE) tubes

(32-mm outside diameter and 3 mm wall thickness)

CICS

First building using energy pile systems in Brazil

Energy pile in São Paulo (Poli - CICS)

Soil thermal characteristics for CICS Project

• Thermal response test (soil thermal conductivity)

Soil thermal characteristics for CICS Project

• Thermal response test (soil thermal conductivity)

CICS – soil, climate conditions, and foundations

CICS – groundwater flow rate (direction)

CICS – Pile foundations

CICS – **Pile foundations**

CICS – Monitoring programme

 Thermal Performance of the Energy Pile System (heat exchange rate - W/m)

• Performance x time (increase of ground temperature) thermistor sensors in the piles and soil

- Effect on the foundation behaviour/settlements
 - piles instrumentation (effect of cyclic thermal loads)
 - monitoring program periodically measure the building movements (after pile heating periods)

CONTINUOUS FLIGHT AUGER (CFA)

 Most suitable solution for the CICS Foundation designers – Consultrix

 Adapted the geothermal system in the chosen foundation solution

CFA with geothermal tubes

CFA with geothermal tubes

after concrete is poured

CFA with geothermal tubes (cage installation)

• Eng. Alberto Porto (Consultrix)

